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Abstract— This article describes the development and
validation of a statistical algorithm to retrieve global all-weather
sea surface wind speed (GAWS) from microwave radiometers
in operational environment. Measurements from the Advanced
Microwave Scanning Radiometer-2 (AMSR2) are utilized to
demonstrate the efficacy of the new all-weather wind speed data
product. The GAWS algorithm exploits the linear combination
of dual-polarized radiometer channels to significantly mitigate
the effect of rain contamination while maintaining sensitivity to
all wind speed regimes from global winds to tropical cyclone
(TC) conditions. The GAWS algorithm was developed using
≈1000 AMSR2 orbits from 2013 to 2021 covering all possible
variations of brightness temperatures and wind speeds. The
Global Data Assimilation System (GDAS) and the Hurricane
Weather Research and Forecasting Model (HWRF) were used
as the assumed surface truth for training and validation. Results
from comprehensive quantitative and qualitative analyses show
that the GAWS retrievals are less susceptible to rain than
standard microwave radiometer wind speeds and can reach
hurricane force winds up to hurricane category 5 (>70 m/s).

Index Terms— Advanced Microwave Scanning Radiometer-2
(AMSR2), all weather, microwave radiometers, ocean surface
wind speed, rain, tropical cyclones (TCs).

I. INTRODUCTION

MICROWAVE radiometers are special sensors designed
to collect Earth’s thermally emitted electromagnetic

(EM) radiation at a certain frequency ( f ), earth incidence
angle (EIA), and polarization (P) [1], [2], [3]. They are
equipped with multiple receiving channels that are sensitive
to specific atmospheric and surface parameters. These geo-
physical quantities modulate the brightness temperatures (Tbs)
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before being collected by the radiometer’s antennas system at
the top of the atmosphere. An inversion process is then used to
infer these geophysical parameters using calibrated Tbs from
the appropriate radiometer channels [4], [5], [6], [7], [8].

Among all sea surface parameters, sea surface winds
(SSWs) are considered the largest source of momentum for
ocean surface. They affect the full range of ocean movement
from individual surface waves to complete current systems.
They also regulate the interaction between the atmosphere
and the ocean via modulating the air–sea exchanges of heat,
moisture, and gases [9], [10].

Under rain-free conditions, the strong correlation between
microwave emission and surface roughness leads to accu-
rate SSW retrievals from Tbs (within 1-m/s accuracy) [11].
In contrast, the task of retrieving SSW from Tbs in the
presence of precipitation is much more challenging and leads
to erroneous (often exaggerated) SSW retrievals. This can be
mainly attributed to the following reasons [12].

1) Rain increases the atmospheric attenuation, which,
in turn, decreases the signal-to-noise ratio making Tbs
less sensitive to SSW.

2) Rain and wind speed signatures on Tbs are very similar;
thus, the existence of rain within the radiometer instan-
taneous field of view (IFOV) has comparable effect on
Tbs as an increase in wind speed.

3) Physical retrieval algorithms depend on radiative transfer
models (RTMs). Due to the high variability of rain [13],
it is very difficult for the RTM to accurately model Tbs
under rain conditions.

However, for many applications, such as cyclogenesis and
storms tracking, the ability to retrieve SSW in the presence of
rain is valuable. The new global all-weather SSW algorithm
presented in this article, hereafter referred to as global all-
weather sea surface wind speed (GAWS), is an attempt to
mitigate rain contamination of microwave radiometer mea-
surements for the purpose of retrieving global SSW under
all-weather conditions, including tropical cyclones (TCs) and
extra-TCs (ETCs).

In May 2012, the Japanese Aerospace Exploration
Agency (JAXA) launched the Global Change Observation
Mission-Water (GCOM-W1) with the Advanced Microwave
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TABLE I
AMSR2 INSTRUMENT SPECIFICATIONS

Scanning Radiometer-2 (AMSR2) onboard [14], [15]. AMSR2
has a full suite of dual-polarized channels ranging from 6 to 89
GHz providing sufficient information to retrieve ocean surface
and atmospheric parameters. Thus, AMSR2 is used in this
study as an application of the GAWS retrieval algorithm.

The remaining of this article is organized as follows.
Section II provides an instrument overview of AMSR2 and its
operating characteristics. Section III explains the steps taken in
the development of the GAWS retrieval algorithm. Section IV
presents the assessment and performance evaluation of the
GAWS algorithm when applied to AMSR2 measurements
and compared with numerical weather models and other data
products. Finally, Section V summarizes our findings and
conclusions.

II. AMSR2 INSTRUMENT OVERVIEW

AMSR2, onboard of GCOM-W, measures dual-polarized
[vertical (V-pol) and horizontal (H-pol)] Tbs at 6.9, 7.3, 10.65,
18.7, 23.8, 36.5, and 89.0 GHz with an IFOV spatial resolution
that varies inversely with frequency. It is a sun-synchronous
orbiter (local time of ascending node 13:30) at an altitude
of ≈700 km and a conical scanning geometry acquiring
measurements along a semicircular pattern in front of the
spacecraft. It operates at a nominal EIA of 55◦, resulting in a
wide swath of 1450 km [14], [15] covering more than 99% of
the Earth every two days.

AMSR2 shares most of AMSR-E [15], [16] characteristics
with multiple enhancements, specifically: the addition of the
7.3-GHz channels [for the detection of C-band radio frequency
interference (RFI)], 12-bit quantization for all channels, 2.0-m
aperture diameter antenna (compared with the 1.6-m diameter
of AMSR-E) that completes one full rotation every 1.5 s,
and improvements in the calibration system [15]. The sum-
marized instrument specifications of AMSR2 are shown in
Table I.

AMSR2 calibrated Tbs [17] are used to generate a suite of
oceanic environmental data records (EDRs), including cloud
liquid water (CLW), total precipitable water (TPW), precipi-
tation [18], sea surface temperature (SST) [6], and SSW [19].
In addition, two derived products are also provided, namely:
SST anomaly and TPW percentage normal. A near-real-time
presentation of AMSR2 advanced satellite data products can
be obtained from [20].

Fig. 1. AMSR2 pass over Hurricane Sam (29 September, 2021) showing
(a) AMSR2 6-GHz H-pol brightness temperature, (b) AMSR2 10-GHz H-pol
brightness temperature, (c) AMSR2 precipitation, and (d) standard wind
speed retrievals from AMSR2 where gaps are flagged retrievals due to rain
contamination.

III. ALGORITHM DESCRIPTION

The accuracy of standard SSW retrievals from microwave
radiometers tends to degrade rapidly in the presence of rain.
As a result, retrievals from rainy scenes are often flagged
leaving considerable gaps in areas of tropical convection, such
as TCs and ETCs. Fig. 1 demonstrates the rain contami-
nation effect on Tb measurements using AMSR2 pass over
Hurricane Sam (29 September, 2021), where warm colors
denote higher Tb values and cold colors for lower Tb values.
Fig. 1(a) and (b) shows AMSR2 6- and 10-GHz H-pol Tb in
kelvin, respectively, and Fig. 1(c) shows AMSR2 retrieved rain
rate (RR) in mm/h for comparison. It is clear how observed
Tbs [Fig. 1(a) and (b)] exhibit a strong signature of rain when
compared with Fig. 1(c). When used in standard retrieval
algorithms, Tbs from rainy scenes lead to erroneous SSW
retrievals resulting in gaps when flagged, as shown in Fig. 1(d).

Thus, the GAWS algorithm attempts to extend the usability
of microwave radiometer measurements for the purpose of
retrieving global SSW to all-weather conditions and wind
speed regimes. It differs from standard SSW retrieval algo-
rithms by being a statistical-based algorithm that does not
rely on an RTM. Also, it exploits a linear combination of
multispectral dual-polarized Tbs that keeps rain signature
relatively small even in heavy rain. This section will describe
in detail the development of GAWS retrieval algorithm using
AMSR2 measurements.

A. Datasets

AMSR2 acquires Tbs from 12 different channels. These Tbs
are obtained from JAXA’s Level 1B version 1.1 (GW1AM2
L1B v1.1, indicated hereafter as AMSR2 L1B). In addition
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Fig. 2. Linear combination of AMSR2 (a) 6- and (b) 10-GHz V-pol brightness temperatures resulting in (c) that is much less sensitive to rain.

Fig. 3. Sensitivity of AMSR2 H- and V-pol 6-GHz channels (first column), 10-GHz channels (second column), and 18-GHz channels (third column) to
(a)–(f) wind speed and (g)–(l) RR.

to observed Tbs, this data product contains the observation
position (latitude and longitude), time, and orbit information.
A detailed description of AMSR2 L1B data product is avail-
able online in [21]. It is worth noting that the GAWS retrieval

algorithm makes use of the calibrated AMSR2 L1B Tbs as
described in [17] to reduce post-launch calibration biases.

For training and validation purposes, the Global Data
Assimilation System (GDAS) [22], [23] and the Hurricane
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Fig. 4. Empirical quantities (ζ1, ζ2, and ζ3, in kelvin) as a function of (a)–(c) wind speed in m/s and (d)–(f) AMSR2 RR in mm/h. Color indicates the
number of points as shown in the color bar.

Fig. 5. First-stage regression coefficients (a) C0, (b) C1, (c) C2, and (d) C3).

Fig. 6. Second-stage regression coefficients (a) β0 and (b) β1, as a function of wind speed retrievals from first stage.

Weather Research and Forecasting Model (HWRF) [24], [25]
were used as the assumed surface truth after being spatially
and temporally interpolated to AMSR2 observations’ time and
location.

GDAS data are readily available every 6 h and provide
a set of surface and atmospheric parameters, including the
10-m U and V wind components. The assimilation system
used by GDAS blends data from multiple sources (i.e., sur-
face observations, balloon data, wind profiler data, aircraft
reports, buoy observations, radar observations, and satellite
observations) into a gridded 3-D model space. In this study,

we used the 0.25◦ resolution GDAS data, which consist of
1440 × 720 longitude/latitude grid boxes.

The HWRF model is an evolving system that was devel-
oped at National Oceanic and Atmospheric Administration
(NOAA)’s National Centers for Environmental Prediction
(NCEP). It provides numerical guidance for operational fore-
casters at all oceanic basins for the forecasting of TCs’ track,
intensity, and structure. HWRF is triply nested, providing three
different gridded domains that encompass the location of the
storm at each analysis time: one large parent domain and two
smaller nested domains with smaller area coverage and higher
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resolution than the parent domain. In our analysis, we used
the middle nest domain “d02” with a resolution closest to an
AMSR2 sampling of 10 km.

For extreme winds validation, we used information from
the International Best Track Archive for Climate Stewardship
(IBTrACS) dataset. It was developed by the NOAA’s National
Climatic Data Center (NCDC) and is considered one of
the most comprehensive global databases of TCs spanning
from 1840 to present from over ten international forecast
centers [26]. This study uses the latest version of IBTrACS
(version 4.0) [27] for TCs center locations and intensities
interpolated to AMSR2 acquisition times as will be described
in Section IV-B.

B. Quality Control

Being a global SSW retrieval algorithm, GAWS checks
for several sources of Tb contamination that can lead to
erroneous SSW retrievals in rain-free or rainy conditions.
Contamination due to land and ice was accounted for by
flagging the contaminated areas using AMSR2 L1B land/ice
mask.

Furthermore, AMSR2 ascending orbits are prone to signif-
icant sun glitter effects. For pixels experiencing sun glitter
contamination (when angle between AMSR2 viewing direction
and the sun glitter direction is <25◦), the algorithm will flag
these regions using sun azimuth and elevation information
provided in the AMSR2 L1B data files.

Finally, the addition of the 7.3-GHz channel in AMSR2
allowed for the detection of C-band RFI. RFI signals are
usually narrow banded and will only affect one of the C-band
channels (6.9 or 7.3 GHz). The algorithm will flag RFI
contaminated measurements if the difference between these
two channels is >3 km.

C. Algorithm Development

The GAWS retrieval algorithm is a statistical-based algo-
rithm that retrieves global ocean surface wind speeds using
microwave radiometer Tbs under all-weather conditions.
It employs a multistage linear regression technique that maps
a set of empirically derived independent variables into SSW
retrievals. Sections III-C1 and III-C2 describe the development
of the GAWS algorithm and the formulation of the independent
variables and the regression coefficients.

1) Independent Variables: The development of GAWS
relies on finding empirical quantities that intrinsically exhibit
immunity to rain contamination while maintaining sensitivity
to all SSW regimes, including hurricane force winds. Meissner
and Wentz [28] have shown that the linear combination of the
37-GHz H- and V-pol Tbs significantly reduces the effects of
the atmospheric absorption and scattering. Later, this method
was refined by Soisuvarn et al. [29] using Tbs at 10.65,
18.7, and 36.7 GHz to show that a linear combination of
Tbs, expressed as “A × T bVpol − T bHpol” (or AV − H for
short), reduces the impact of the atmospheric upwelling and
reflected downwelling components of Tbs, thereby making the
AV − H measurements almost independent of atmospheric
transmittance components, such as water vapor and CLW.

TABLE II
ATMOSPHERIC CANCELLATION COEFFICIENTS FOR

AMSR2 6-, 10-, AND 18-GHZ CHANNELS

Fig. 7. Evaluation of retrieved wind speeds against GDAS. The x-axis is
0.25◦ resolution GDAS wind speed (m/s), and the y-axis is AMSR2 GAWS
retrieved wind speed (m/s).

In this study, we will further extend the concept of linearly
combining different radiometer channels to develop empiri-
cal quantities that are less susceptible to rain contamination
while upholding decent sensitivity to SSW. This work is an
expansion of the previously developed all-weather geophysical
model function (AW-GMF) described in [30], and it narrows
the focus to retrieve SSW using a unique statistical-based
inversion process.

The GAWS retrieval algorithm makes use of three empirical
quantities (ζ1, ζ2, and ζ3), all in kelvin, resulting from the
linear combinations of 6-, 10-, and 18-GHz H- and V-pol
channels. The rationale for selecting these channels is that
the surface emissivity and, consequently, Tbs show sensitivity
to SSW with no indication that the surface signal will saturate
at higher wind speeds [31], [32]. Thus, once the atmospheric
attenuation is removed, the 6-, 10-, and 18-GHz H- and V-
pol channels will be good candidates for retrieving SSW in
all wind speed regimes. The linear combinations of these
channels can be mathematically described, as shown in (1)–(3).
Table II summarizes the coefficients (λ and A) used to linearly
combine corresponding channels for atmospheric cancellation

ζ1 = 2 × XV − AVH18. (1-a)
XV = T bVpol,6 GHz − λV × T bVpol,10 GHz. (1-b)

AVH18 = A18 × T bVpol,18 GHz − T bHpol,18 GHz. (1-c)
ζ2 = 2 × X H − AVH18. (2-a)

X H = T bHpol,6 GHz − λH × T bHpol,10 GHz. (2-b)
ζ3 = 2 × XV − AVH10. (3-a)

AVH10 = A10 × T bVpol,10 GHz − T bHpol,10 GHz. (3-b)
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Fig. 8. AMSR2 GAWS wind speed error as a function of (a) latitude, (b) EIA, (c) cross-scan location, and (d) relative azimuth. All comparisons show a
0-m/s mean bias and <2-m/s rms error.

Fig. 9. Comparison of wind speed error as a function of GDAS wind speed for multiple RRs indicated by different colors for (a) AMSR2 GAWS and
(b) ASCAT.

Fig. 10. Example of GAWS wind speed retrievals in rain where shows (a) AMSR2 RR (mm/h), (b) GAWS applied to AMSR2 retrievals in m/s, and (c) GDAS
wind speed in m/s.

The values of λ and A were found using gradient descent,
ensuring the linear combination of the corresponding channels
has minimal sensitivity to rain following:

∂L
∂RR

= 0 (4)

where L represents the different linear combinations expressed
in (1-b), (1-c), (2-a), and (3-b) and RR is the rain rate in mm/h.
When the partial derivative of L with respect to RR equals
zero, this means that L|A or λ is not sensitive to rain.

Fig. 2 shows a depiction of (1-b) with λV equals 0.4 using
AMSR2 6- and 10-GHz V-pol Tbs (Fig. 2(a) and (b),
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respectively). The result of this linear combination is quan-
tity XV [Fig. 2(c)] that is much less sensitive to rain than
T bVpol,6 GHz and T bVpol,10 GHz. Moreover, Fig. 3 shows the
sensitivity of AMSR2 6-, 10-, and 18-GHz H- and V-pol
channels to SSW (Fig. 3(a)–(f), where the magenta line is
the linear fit shown for reference) and rain [Fig. 3(g)–(l)].
The legends on the SSW sensitivity plots show the slope
and the y-intercept of the linear fit. In addition, the legends
on all the plots show the Pearson correlation coefficient (R)

between the AMSR2 channel and the corresponding geophys-
ical parameter (SSW or rain). Color denotes number of points
as shown in the color bar. The plots in Fig. 3 clearly show
the strong rain signal embedded in the measured Tbs at these
channels.

The three empirical quantities (ζ1, ζ2, and ζ3) are depicted
as 3-D density plots and shown in Fig. 4. The reason behind
the formulation of these quantities in the form described in
(1-a), (2-a), and (3-a) is to increase the sensitivity to SSW by
examining the slope of the linear fit of the empirical linear
combinations as a function of SSW.

Fig. 4(a)–(c) shows the sensitivity of ζ1, ζ2, and ζ3, respec-
tively, to SSW, and Fig. 4(d)–(f) shows the sensitivity to
rain. The magenta line is the linear fit, and the blue line
is the binned/averaged line both added for reference. When
comparing Figs. 3 and 4, it is evident that ζ1, ζ2, and ζ3 are
less susceptible to rain (significant reduction in the values
of R) while maintaining decent sensitivity to wind induced
surface emission. Also, one can notice from Fig. 4(d)–(f) that
a positive slope exists for RRs of ≥≈15 mm/h, indicating that
either high RRs are in fact associated with high SSW, or a
small residual rain signal still exists in the derived empirical
quantities.

2) Regression Technique: The GAWS retrieval algorithm
is a statistical multiple linear regression of SSW against the
empirical quantities ζ1, ζ2, and ζ3. The training dataset consists
of 1000 AMSR2 orbits including hurricane over passes from
2013 to 2021 to cover all day/night and seasonal variability.
GDAS and HWRF data were fused together to create a hybrid
training dataset after being spatially and temporally interpo-
lated to AMSR2 measurements’ locations. Whenever HWRF
wind fields exist, they replace GDAS data points for that storm.
This provided a consistent and more comprehensive training
dataset when compared with scarce in situ measurements.
Moreover, AMSR2 is a polar orbiter, and collocations with
other polar orbiting earth observing systems will limit the
training dataset to high latitudes.

The regression consists of two stages. The first-stage regres-
sion coefficients are modeled as a function of SST, since
surface emissivity and the absorption by CLW depend on it.
The statistical model function is mathematically described in
(5), and the regression coefficients C0, C1, C2, and C3 are
shown in Fig. 5 as a function of SST

SSWstage1 = C0(SST) + C1(SST) × ζ1

+ C2(SST) × ζ2 + C3(SST) × ζ3. (5)

Since GAWS retrievals are global and span a wide range
of SSW regimes, it is beneficial to add a second-stage

Fig. 11. Depiction of the composite field generation process. Statistics are
generated in the vertical (z) direction within cells in the x- and y-directions
representing storm-centric coordinates.

Fig. 12. Categorized number of snapshots used to generate composite plots.

regression to fine-tune the retrievals [33], where the regression
coefficients now depend on wind speed retrievals from first
stage. ζ2 was selected as the only independent variable for
the second-stage regression, since it has the highest sensitivity
to SSW (biggest slope and correlation with SSW), as shown
in Fig. 4(b). The second-stage statistical model function is
mathematically described in (6), and the regression coefficients
β0 and β1 are shown in Fig. 6 as a function of SSW from
stage 1

SSWstage2 = β0
(
SSWstage1

)
+ β1

(
SSWstage2

)
× ζ2. (6)

IV. PERFORMANCE EVALUATION

To evaluate the performance of the GAWS retrieval algo-
rithm, two types of validation were conducted, namely: the
standard validation and the extreme winds validation. While
the standard validation evaluates the overall performance of the
GAWS algorithm retrieving global winds, the extreme winds
validation evaluates the performance of the GAWS algorithm
under extreme wind conditions, such as TCs and ETCs.
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Fig. 13. Composite plots comparison of mean wind speed among (a) HWRF, (b) GDAS, and (c) GAWS applied to AMSR2. Color indicates mean wind
speed in knots. The x- and y-axes are the distance (km) away from storm center.

Fig. 14. Similar to Fig. 13 but for major hurricanes only (categories 3–5). (a) HWRF. (b) GDAS. (c) GAWS applied to AMSR2.

Fig. 15. Composite plots of the probability of hurricane force winds, storm force winds, and gale force winds (columns) for HWRF, GDAS, and GAWS
applied to AMSR2 (rows). The x- and y-axes are distance (km) away from storm center.

A. Standard Validation
The standard validation starts with a direct comparison

between GAWS retrievals and 0.25◦ resolution GDAS using
500 independent AMSR2 orbits that were not used in training.

Fig. 7 shows a 3-D density plot where the x-axis is GDAS
SSW and the y-axis is AMSR2 GAWS retrievals both in m/s.
Histogram for the two quantities being compared is shown as

well representing the distribution of wind speeds used in the
comparison.

Fig. 8 shows the 3-D density plot of the wind speed error
(SSWGAWS − SSWGDAS) as a function of several AMSR2
sensor parameters [latitude in Fig. 8(a), EIA in Fig. 8(b),
cross-scan location (XID) in Fig. 8(c), and relative azimuth (χ)

in Fig. 8(d)]. These comparisons will identify any systematic
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Fig. 16. Composite plots of wind speed error for (a) AMSR2–GDAS, (b) SMAP–GDAS, (c) AMSR2–HWRF, and (d) SMAP–HWRF. The x- and y-axes
are the distance (km) away from storm center.

biases in the GAWS retrievals that are a function of these
selected parameters. The solid lines represent the mean error,
and the dashed line represents the root-mean-square error
(RMSE). The mean error for GAWS retrievals is around zero,
and the RMSE is <2 m/s for all wind speed regimes.

To validate the performance of GAWS in the presence
of precipitation, a comparison of GAWS and advanced
scatterometer (ASCAT) wind speed error (m/s) for multiple
RRs (mm/h) is shown in Fig. 9 as a function of GDAS
wind speed. For ASCAT, we used wind speeds V02.1.1 from
Remote Sensing Systems [34]. Among other parameters, this
dataset includes ASCAT wind speeds and the collocated
radiometer RRs up to 12.5-mm/h spanning low, moderate, and
heavy rain. Fig. 9 shows that while ASCAT underestimates
wind speeds for high rain and high wind speeds probably due
to rain attenuation, GAWS shows slight overestimation of wind
speeds at high RRs of >12 mm/h. This could be the result of
residual rain signal that was not completely removed from the
empirical quantities used in the GAWS retrieval algorithm.

Fig. 10 shows an example of GAWS retrievals in the
presence of rain and normal wind conditions. Fig. 10(a) shows
AMSR2 RR in mm/h; Fig. 10(b) shows GAWS applied to
AMSR2 in m/s, and Fig. 10(c) shows GDAS wind speed
(in m/s) for reference. It is evident that in the regions of precip-
itation, the retrieved SSW does not show any overestimation
of SSW, when compared with GDAS, due to the increase of
surface emission.

B. Extreme Winds Validation

For extreme winds validation, composite plots will be used
to validate the performance of GAWS under such conditions.
As the name implies, a composite plot is a compound of
several subfields, or “snapshots,” of SSW retrievals in storms.
These snapshots are defined by a circle with a specified
radius from the center of a storm obtained from the IBTrACS
database. The IBTrACS data are provided in a 3-h grid and is
adjusted by linear interpolation to AMSR2 acquisition time.

The first step in generating SSW composite fields is to
put all snapshots in a storm-centric coordinate system. Then,
all snapshots are rotated, by different angles corresponding
to storm motion direction calculated from IBTrACS, so that
the direction of storm motion is always toward the top of

Fig. 17. Wind speed comparison, in knots, as a function of radial distance
from storm center for HWRF (yellow), GDAS (green), SMAP (red), and
GAWS applied to AMSR2 (blue).

the image. Subsequently, the rotated storm-centric snapshots
are stacked with the center point being the center position
estimate interpolated to the sensor’s mean time. This can be
imagined in a 3-D space (x, y, z), as shown in Fig. 11. The
x- and y-dimensions are the storm-centric coordinates, and
the z-dimension represents the stacked snapshots after being
rotated. Once these snapshots are stacked, they can be compos-
ited, and statistical measures (e.g., mean, median, maximum,
and so on) can be computed along the stacking dimension (z)
without losing the spatial distribution of the error, as it is the
case in scatter plots and histograms.

For this study, snapshots data are limited to ±90-min time
difference between IBTrACS interpolated time and the sensor
acquisition time, and within a circle of 500-km radius around
the interpolated storm center position from IBTrACS.

The snapshot data are gridded into a storm-centric common
grid with a 25×25−km cell size. The composite plots analyses
were generated using ≈160 snapshots from 2013 to 2021 and
include hurricanes from category 1 up to category 5, as shown
in Fig. 12.

Fig. 13 shows the composite fields comparison of mean
SSW (in knots) among HWRF [Fig. 13(a)], GDAS [Fig. 13(b)]
and GAWS applied to AMSR2 [Fig. 13(c)]. Colored contours
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Fig. 18. Wind speeds (in knots) as a function of radial distance from storm center for HWRF (yellow), GDAS (green), and GAWS applied to AMSR2 (blue)
for TCs with RMW (a) ≤25 km, (b) between 25 and 50 km, and (c) ≥75 km.

indicate storm type from breeze (22–27 knots) up to hurricane
force winds (>64 knots). From Fig. 13, one can notice the
comparable sizes of the colored contours between all prod-
ucts. In particular, maximum winds from HWRF, GDAS, and
AMSR2 are clustered in the right quadrants of the composite
plots where forward motion contributes to the rotation of the
storm. Moreover, while HWRF has the biggest hurricane force
winds area (biggest purple contour), GDAS and AMSR2 have
comparable purple contours.

This is not surprising and can be attributed to multiple
factors. First, the original resolution of the HWRF model
(≈10 km) is higher than that of GDAS and AMSR2. Second,
HWRF and GDAS generation time matches the originally
reported IBTrACS samples every 3 h, while AMSR2 over-
passes time can vary. Third, HWRF is specially tailored to
model SSW in TCs, while GDAS and GAWS are global data
products.

Another reason that can attribute to the differences in these
contours is the eye of the storm. While HWRF and GDAS
can clearly show the eye for all storm sizes, AMSR2 cannot,
due to the use of low-frequency channels, with relatively large
IFOVs, in the GAWS retrieval algorithm.

Fig. 14 is similar to Fig. 13 but using snapshots of major
hurricanes only (categories 3–5). It consists of 68 snapshots
and shows a comparable performance of GAWS to that shown
in Fig. 14 when hurricanes from all categories (categories 1–5)
were included. This indicates the consistent performance of
GAWS for all TC categories.

One more important metric calculated from the composited
snapshots is the probability of winds. Fig. 15 shows the
probability of hurricane force winds (first column), storm force
winds (second column), and gale force winds (third column)
for GAWS applied to AMSR2 (first row), GDAS (second row),
and HWRF (third row), where color indicates the probability
of occurrence. While there are slight differences between the
calculated probabilities, the spatial distribution is comparable,
indicating the efficacy of GAWS to retrieve extreme winds
where they occur.

To further examine GAWS performance, it was compared
with wind speeds derived from the soil moisture active passive
(SMAP). SMAP was chosen for this comparison, because
it operates in the L-band range, and it should be less sus-
ceptible to rain effects. Fig. 16 shows the composite plots

of the error in the retrieved wind speeds when compared
with GDAS [Fig. 16(a) and (b)] and when compared with
HWRF [Fig. 16(c) and (d)]. For SMAP, we used wind speeds
V1.0 from Remote Sensing Systems [35]. It is obvious that
the magnitude and the spatial distribution of the error are alike
between the two sensors especially inside the 250-km circle
where most of the high wind speeds, high RRs, and rapidly
changing wind direction take place.

Moreover, Fig. 17 shows a comparison between AMSR2
and SMAP wind speeds as a function of radial distance
from the center of the storm. The wind speeds from all
quadrants were averaged in 10-km steps and plotted as a point
on the curve. The curves start to deviate from each other
when the distance is ≈150 km away from the storm center
corresponding to the eyewall region of the TC. It is worth
noting that the differences between the instruments’ original
resolutions and times of the overpasses can attribute to the
differences between sensors in Figs. 16 and 17.

As mentioned in Section III, GAWS exploits the linear com-
bination of AMSR2 6-, 10-, and 18-GHz channels, with IFOV
size up to ≈60 km for the 6-GHz channel. To demonstrate the
effect of AMSR2 channels resolution on GAWS performance,
Fig. 18 shows GAWS (blue curve), HWRF (yellow curve),
and GDAS (green curve) wind speeds as a function of radial
distance from the center of the storm. The curves are created
from snapshots of TCs (categories 1–5) in a similar fashion to
Fig. 17 where wind speeds from all quadrants were averaged
in 10-km steps and plotted as a point on the curve. Fig. 18(a)
represents the TCs with radius of maximum winds (RMW;
obtained from IBTrACS) ≤25 km, Fig. 18(b) for TCs with
RMW between 25 and 50 km, and Fig. 18(c) for TCs with
an RMW of ≥75 km. The impact of resolution is clear in the
ability of the wind retrieval algorithm to detect the eye of the
storm [Fig. 18(c)] when the blue curve starts to dip down at
around ≈50 km away from the storm center, versus the case
in Fig. 18(a) and (b) where the size of the eye is smaller than
the IFOV size of AMSR2 C-band channels.

V. SUMMARY

This article described the development and validation of
a new operational global all-weather wind speed retrieval
algorithm. This new all-weather wind speed product has the
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capability to extend the utility of microwave radiometer mea-
surements to areas of heavy precipitation and can be used to
retrieve global wind speeds, including hurricane force winds.

The new algorithm, GAWS, is statistical-based and con-
sists of two-stage multiple linear regression. The first-stage
regression coefficients are a function of SST, and the second-
stage regression coefficients are a function of the retrieved
SSW from first stage. The regression was trained using
1000 AMSR2 orbits including hurricane overpasses and a
hybrid dataset of GDAS and HWRF fused together as the
assumed surface truth.

The independent variables fed to the regression are empiri-
cal quantities derived from the linear combinations of AMSR2
6-, 10-, and 18-GHz H- and V-pol channels. These linear
combinations of channels are much less susceptible to rain,
which allows retrieving SSW even in the presence of heavy
precipitation.

The operational implementation of GAWS will complement
the set of standard satellite data products and will help scien-
tists and forecasters to further analyze parts of the storms that
were previously challenging. Furthermore, GAWS can play
an important role in cyclogenesis studies and in the training
of future SSW retrieval algorithms using machine learning
techniques.
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